Tumoral Immune Resistance Mediated by Enzymes That Degrade Tryptophan
نویسندگان
چکیده
Cancer patients mount T-lymphocyte responses against antigens expressed selectively by their malignancy, but these responses often fail to control their disease, because tumors select mechanisms that allow them to resist immune destruction. Among the numerous resistance mechanisms that have been proposed, metabolic inhibition of T cells by tryptophan catabolism deserves particular attention, because of the frequent expression of tryptophan-degrading enzymes in human tumors, and because in vitro and in vivo studies have shown that their enzymatic activity can be readily blocked by pharmacologic inhibitors, thereby restoring T-cell–mediated tumor cell killing and paving the way to targeted therapeutic intervention. In view of recent observations, and taking into account the differences between human and mouse data that differ in several aspects, in this Cancer Immunology at the Crossroads article, we discuss the role of the three enzymes that have been proposed to control tryptophan catabolism in tumoral immune resistance: indoleamine 2,3-dioxygenase 1 (IDO1), tryptophan 2,3-dioxygenase (TDO), and indoleamine 2,3-dioxygenase 2 (IDO2). Cancer Immunol Res; 3(9); 978–85. 2015 AACR.
منابع مشابه
Cancer Immunology at the Crossroads: Experimental Immunotherapies Tumoral Immune Resistance Mediated by Enzymes That Degrade Tryptophan
Cancer patients mount T-lymphocyte responses against antigens expressed selectively by their malignancy, but these responses often fail to control their disease, because tumors select mechanisms that allow them to resist immune destruction. Among the numerous resistance mechanisms that have been proposed, metabolic inhibition of T cells by tryptophan catabolism deserves particular attention, be...
متن کاملTumoral Immune Resistance Mediated by Enzymes That Degrade Tryptophan.
Cancer patients mount T-lymphocyte responses against antigens expressed selectively by their malignancy, but these responses often fail to control their disease, because tumors select mechanisms that allow them to resist immune destruction. Among the numerous resistance mechanisms that have been proposed, metabolic inhibition of T cells by tryptophan catabolism deserves particular attention, be...
متن کاملTryptophan-Degrading Enzymes in Tumoral Immune Resistance
Tryptophan is required for T lymphocyte effector functions. Its degradation is one of the mechanisms selected by tumors to resist immune destruction. Two enzymes, tryptophan-2,3-dioxygenase and indoleamine 2,3-dioxygenase 1, control tryptophan degradation through the kynurenine pathway. A third protein, indoleamine 2,3-dioxygenase 2, was identified more recently. All three enzymes were reported...
متن کاملReversal of tumoral immune resistance by inhibition of tryptophan 2,3-dioxygenase.
Tryptophan catabolism mediated by indoleamine 2,3-dioxygenase (IDO1) is an important mechanism of peripheral immune tolerance contributing to tumoral immune resistance, and IDO1 inhibition is an active area of drug development. Tryptophan 2,3-dioxygenase (TDO) is an unrelated hepatic enzyme that also degrades tryptophan along the kynurenine pathway. Here, we show that enzymatically active TDO i...
متن کاملExpression profile of the human IDO1 protein, a cancer drug target involved in tumoral immune resistance
Tryptophan catabolism by indoleamine 2,3-dioxygenase (IDO1) is a physiological immunoregulatory mechanism often hijacked by tumors. Our recent extensive study of IDO1 protein expression in human tissues showed expression in mature dendritic cells and in pulmonary and placental endothelial cells. IDO1 was also expressed in 56% of tumors, either by tumoral, stromal, or endothelial cells. These re...
متن کامل